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S I M U L A T I O N  OF T H E  PROCESS OF AEROSOL 
W A S H O U T  FROM T H E  VENT PIPE P L U M E  OF A 
N U C L E A R  POWER S T A T I O N  ON I N T E R A C T I O N  WITH 
THE S T E A M - A I R  P L U M E  OF A W A T E R - C O O L I N G  
TOWER 

V. V. Ivanov and S. P. Fisenko UDC 551.594.25:541.182.2 

Based on results of mathematical simulation and laboratory modeling, estimates are obtained for the effect 

of the washout of aerosol and its deposition on the surface of the earth in mixing of the plumes from the 

vent pipe and cooling tower of a nuclear power station (NPS). 

Introduction. The accident at the Chernobyl NPS has spurred interest in the ecological aspects of the 

operation of nuclear power stations, including rather subtle effects. Thus, great interest is shown in the possibility 

of depositing radioactive aerosols, expelled from the vent pipe of an NPS by water droplets from the steam-air 

plume of the cooling tower in a manner like the process of "gas scrubbing" in industry [i ]. A detailed simulation 

of the process of washout of aerosol particles by water droplets is a complex multiple-factor problem. To model 

hydrodynamic fields, one has to solve the three-dimensional problem of the mixing of turbulent plumes from a 

cooling tower and a vent pipe in a turbulent wind stream perturbed by the tower. The quantitative description of 

the hydrodynamics of mixing is necessary to correctly simulate the microphysical processes of the formation and 

growth of droplets and their interaction with aerosol particles. The latter problem is aggravated by the fact that 

generally the size distribution function of droplets at the exit of the tower is unknown. To avoid these difficulties 

and at the same time to obtain a sufficiently precise estimate for the efficiency of the aerosol washout, we used in 

this work a simplified mathematical model of the process, similar to the models for the transfer of impurities in the 

boundary layer of the atmosphere [2 ]. We should mention a conceptually close work [3] in which great attention 

was paid to the simulation of the processes of the initiation and evolution of droplets. But in that work account was 

taken only of the small-scale region of the spectrum of droplets having a radius smaller than 30/~m. Also, complete 

absorption of impurity by droplets was assumed, which, in our opinion, is valid only in special situations. 

Qualitative Estimates. Before presenting the results of detailed quantitative calculations involving the results 

of laboratory modeling it seems expendient to give qualitative estimates of the magnitude of the effects studied [4 ]. 

We start out with the estimation of the probability for aerosol of radius r a to be captured by water droplets of radius 

r. Using an analogy with the kinetic theory of gases [5, 6 ], we introduce the notion of the mean free path of aerosol 

2 a. It can easily be shown that the expression for ~-a has the form 

1 ~. = , (1) 
:r (r a + r) 2 �9 (v/w) N 

where N is the number of droplets of radius r in a unit volume; v is the velocity of aerosol moving under the influence 

of turbulent pulsations; w(r) is the developed velocity of droplets moving under the action of gravity. By the order 

of magnitude the velocity v is equal to v = eouo, where e 0 is the degree of flow turbulence; u0 is the velocity of the 
flow (of the plume in the zone of mixing). As a rule, e0 = (0.1-0.3). The function �9 varies from 1 for motionless 

droplets to the value (l+w/v). For subsequent numerical evaluations we will take the intermediate value �9 -- 2. The 

aerosol is captured by a droplet when the Reynolds number Re >> 1 [4 ], where 
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Re = 2~FW 
lu 

In what follows, we will assume that rather large droplets participate in the capture of aerosol, so that Re 

> > 1. It is important to note that the value of the mean free path 2a depends very slightly on the aerosol radius, 

since almost always ra < < r. The dependence of 2a on N for r a -- 6/~m and r -- 300/~m is the following: for N = 

103, 5-103, 104, and 5" 104 m -3 the quantity ha -- 1.7.103, 340, 170, and 34 m, respectively. It is interesting to note 

that the speed of the developed fall of a droplet with r = 300/tm amounts to 2.5 m/sec [4 ]. 

The probability density f (x) for the path x to be traversed without collisions within the framework of the 

mean free path approximation [5 ] is equal to 

f (x) = exp ( -  x / ~ t a ) / 2 a ,  (2) 

and then the probability p ( L )  for the aerosol to be captured by droplets over the path L is 

p (L) = 1 - exp ( -  L/2a) .  (3) 

The efficiency of the mean free path approximation is associated with the fact that in the cooling tower 

plume the density of droplets is such that the distance between droplets is much larger than the characteristic radius 

of the droplets. The probability for the aerosol particles to be captured by droplets for L = 100 m depends in the 

following way on the free mean path 2a: for 2a -- 1.7" 103, 340, 170, and 34 m the quantity p = 0.06, 0.25, 0.44, 

and 0.94. 

As is seen, for L -- 100 m and ha = 170 m about 445/o of aerosol particles are captured by droplets. Note 

that in the course of the analysis the dimensionless quantity 

B = Lr  2 N - L / ] t  a (4) 

appears, which virtually determines the efficiency of the capture of aerosol by water droplets. When B << 1, the 

probability of capture is low, while with B >> 1 actually all of the aerosol particles are captured by water droplets. 

As follows from Eq. (2), the efficiency of capture is high if L -2a. Expressions (1) and (4) can easily be generalized 

to take into account the size distribution function of droplets. In fact 

h a =  1 N = f n ( r d )  dr d.  
f n (rd) (r a -I- rd) 2 dr d dp (V/Wd) ' 

Thus, the physical meaning of the effective radius of a droplet r in Eqs. (1)-(4) is clear from the following 

formula: 

(r a + r) 2 = f n (rd) (r a + rd) 2 d r d / N .  

It is very difficult to determine theoretically the quantity L; however, we may assume for qualitative evaluations 

that L is of the order of the exit plume diameter of the cooling tower. 

The further evolution of the droplets will be determined by their motion under gravity, the sweeping by 

horizontal wind with velocity U, and diffusional spreading under the influence of turbulent pulsations (we use ky 

to denote the coefficient of turbulent diffusion). In this case, if we neglect the influence of the process of evaporation 

of droplets on the dynamics of motion (which is valid in the majority of practically interesting situations), all the 
water droplets will be swept a distance 

AX - H U  / w (rd) , (5) 
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Fig. 1. Schematic representation of the displacement of the vent pipe and 

cooling tower plumes. 

where H is the effective height of the intersection of the two plumes. Turbulent pulsations cause broadening in the 

direction normal to the wind [4 ]. The width of the trail of droplets deposited onto the earth l can easily be evaluated 
using the familiar estimate of the diffusional width 

l - ~/2ky H / w  (rd) . (6) 

Note that comparison with the numerical calculations given below demonstrates a sufficiently high accuracy 

of expressions (3), (5), and (6). 

Mathematical Model. Below we present a mathematical model and the results of calculations of the washout 

of aerosol for the pipe-cooling tower system of an NPS power-generating unit with a power of 1000-1300 MW. The 

parameters of the cooling tower are: height Hto w = 180 m, mouth radius Rto w = 48 m, vertical velocity of the plume 

at the exit from the mouth Wto w -- 5 m/sec, water flow rate through the cooling system Qtow = 50 ma/sec. The 

parameters of the pipe are: height Hp = 150 m, mouth radius Rp = 2.5 m, vertical velocity of the plume at the exit 

from the mouth wp = 10 m/sec. The distance between the pipe and the cooling tower is 200 m. We consider two 

versions of the relative location of the pipe and cooling tower with respect to the wind direction: the pipe is located 

on the windward and leeward side of the cooling tower. Laboratory modeling shows [7 ] that in these cases the 

plume of the cooling tower captures the pipe plume, and intensive mixing of them occurs. In the mixing zone of the 

plumes the aerosol particles are absorbed by water droplets, transported by an air stream, and are deposited on 

the surface of the earth. In Fig. 1 the domain of numerical solution of the equations of the model is depicted. The 

boundary of the mixing zone of the plumes is located on the inlet boundary of the region, and the geometric 

characteristics of the mixing zone (distance from the center of the cooling tower x, effective height Her and radius 

Ref) are determined from data of the laboratory modeling of different regimes of flow around the pipe-cooling tower 

system, presented in detail in [7 ]. When the processes of the washout of impurities from the atmosphere are 

modeled, the washout speed for an impurity having the volumetric concentration c is usually formulated in the 

form of a Stokes component 2c is the coefficient of washout [8 ]). When aerosol particles of radius r a are absorbed 

as a result of collisions with differently sized droplets described by the radius distribution function n(rd), the 

washout coefficient has the form 

f r (ra, ra) ,, (rd) d r  d , 

where K(ra, r d) is the coeffficient of the turbulent-gravitational coagulation of droplets and aerosol particles, which 

depends on the rate of the turbulent energy dissipation. Thus, to calculate the three-dimensional field of the 

coefficient ;t, it is necessary to have the fields of n(rd) (simulation of the microphysics of the nucleation and evolution 
of droplets) and e (simulation of turbulent aerodynamics). In estimation computations, the microphysical processes 
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can be neglected, taking into consideration that mainly large droplets of radius - 100/~m will wash out the aerosol. 

First, the collision cross section of such droplets and aerosol particles is close to unity and falls rapidly to zero with 

a decrease in the radius of the droplets [9 ]. Second, droplets of smaller radius under normal atmospheric conditions 

have no time to reach the surface of the earth because of evaporation [10 ], and therefore the aerosol captured by 

them will not be deposited. Since the size distribution function of the droplets in the plume of the cooling tower is 

unknown, we assume for simplicity that all of the droplets are of the same size. Let us evaluate the concentration 

and radius of large droplets. The overall water content of the cooling tower plume, i.e., the quantity of water in 

unit volume in vapor and droplet-liquid phases can be estimated by taking into account the fact that about 2.5% 

of the water is lost from the cooling system in the cooling tower: 

0.025Qtow pw - 3 
= - 5 0  g-m 2 

~Rtow Wtow 

Large droplets fall within the plume mainly as a result of sputtering, fragmentation and entrainment by 

air stream and also coagulation of fine droplets. It is rather difficult to estimate theoretically the water content of 

the droplet phase of the plume. We assume that by the order of magnitude 6d = 10 g" m -3, i.e., large droplets contain 

on the order of 20% of the water lost. To estimate the concentration of large droplets, we shall avail ourselves of 

the formula that  is usually used to describe the spectrum of large droplets in clouds [9 ]: 

N (rd) = N 1 (r 1/rd) a , r 1 _< r d _< r 2 , a >_ 2 ,  

where N ( r  d) is the concentration of droplets of radius larger than rd; N1 is the total concentration of large droplets; 

r t --- 85 #m, r2 changes in wide ranges in accordance with the type of clouds but rarely exceeds 1500/~m. Assuming 

that intense fragmentation of droplets occurs inside a cooling tower and therefore their spectrum is rather wide, 

we adopt the minimum value a -- 2 and find the concentration of large droplets at the outlet from the cooling tower 
mouth 

and the radius of the droplets 

~d -3 
Nto w = N 1 = = 7.6" 104 m 

4 3 (  3r2 ) 
~ P w  rl rl - 2 

1 

r d = r 1 rl - 2 = 315 ~ m .  

The formula for the coefficient of the coagulation of droplets of radius r d and aerosol particles of radius ra 
has the form [9 ] 

i- d -- i- a 
K (rd, ra) = g (r d + ra) z (g + gt) ~ E + 2Ktb.  (7) 

Here g is the free fall acceleration, gt = 4 .8 /z~(e3/v)  ~/4 is the effective turbulent acceleration, e is the rate of turbulent 

energy dissipation, v is the kinematic viscosity of air, ~d = 2 /9  pwr2/t~, r a = 2 / 9  par2a/l a are the relaxation times 

for droplets and aerosol particles, a is the dynamic viscosity of air, ~o (Re) is a correction factor taking into account 

the deviation of the law that  governs the motion of droplets in air from the Stokes law with growth in the Reynolds 

number, E is the collision cross section of droplets and aerosol particles. For droplets of radius rd = 315/~m the 

speed of fall is Wd = 2.59 m/sec  [11 ], Re = 2rwwd/V = 121, ~o(Re) = 4.64 [9 ]. The collision cross section for Re 
>> 1 can be calculated from the formula of Langmuir and Blodget [10 ]: 
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E = Stk2/(Stk + 0.125) 2 , 

where 

Stk = 

2 
Pa ra (wd - wa) 

9/~r d 

is the Stokes number, wa is the velocity of the gravitational deposition of aerosol. When r d > 50/~m, the speed of 

the fall of droplets depends almost linearly on the radius, and therefore the quantity E depends mainly on the 

radius of aerosol and differs substantially from zero when ra > 1 ~tm. We consider aerosol particles of density Pa 

= 2.5 g/cm 3 and radius ra ffi 6/~m (Wa = 2.85" 10 -3 m/see,  Stk ffi 4.79, E = 0.97). For these particles experimental 

data on the speed of dry deposition onto the surface are available. This speed enters into the boundary condition 

for the concentration of free aerosol. 

The diffusional part of the coagulation coefficient is described by the term 

Ktb = 1.7 (e /v )  1/2 (r d + ra) 3 . 

The rate of turbulent energy dissipation at the exit of the plume from the cooling tower can be estimated 

from the formula 

,2 2 
"~ v u / l  t ~tow 

where u '2 is the mean square of velocity pulsations; l t is the microscale of turbulent pulsations. If we avail ourselves 

of the experimental results for axisymmetric turbulent jets [12 ], then 

m 

(u'2) t/2 ---- 0.2 Wtow, l t = 1.23 (2 Rto w Wtow/V) 1/2 AZ,  

where AZ is the distance from the cooling tower mouth in the vertical direction. Assuming for estimation that AZ -- 

Rtow, we obtain It = 10 -2 m, etow= 0.17 m/see 2. Since the turbulence of the plume has a much greater intensity and 

much finer scale than the atmospheric boundary layer turbulence, we can approximately regard the rate of dissipation 

in the plume to be a scalar field, which is transferred by the air stream and is "blurred" by the atmospheric turbulence. 

Then the equation for e has the form 

2 
0 te  + UO x e = k y o y y e +  O z k  zO z e .  (8) 

The concentration of droplets is determined by the transfer by the air stream, gravitational deposition, and 

turbulent diffusion: 

0 t N + UO x N - w d 0 z N = ky 02  N + 0 z k z 0 z N .  (9) 

The equation for the concentration of the free aerosol is supplemented with the term that describes the 

washout: 

2 (lO) 0 t c  a +  UO x c  a -  w aO z c  a =kyOyyC a +  0 z k  zO z c  a - , ~ c  a. 

The concentration of the aerosol captured by droplets is determined by the transfer by the air stream, 

gravitational deposition of droplets, turbulent diffusion, and influx due to the washout of the free aerosol 

2 (11) 
0 t c  d + UO x c  d -  w dO z c  d = kyOyyC d + 0 z k  zO z c  d +)Lc a.  
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In the case of droplets of the same radius, the coefficient of the washout of the free aerosol is 

2 = K (rd, ra) N.  (12) 

The system of equations (7)-(12) is closed by boundary conditions for e, N, Ca, Cd. 

At the inlet boundary x = x0 the condition of equality of the fluxes of scalar quantities through the mouths 

of the sources and the inlet boundary yields 

2 
2 R2ow Cp Wp 2 0} / U (Zef) Ref eto w Wto w Rto w , Nto w Wto w , Rp, 

2 
{e ,N,c  a ,Cd} = when y2+ (Z-Zef)  2 <Ref ;  

2 
0 when y2 + (z - Zef) 2 > Ref, 

where Cp is the concentration of the free aerosol at the exit of the plume from the vent pipe mouth. 

Since in the majority of cases the height of the atmospheric boundary layer lies within the height of the 

integration region Zw = 1000 m and there are no vertical turbulent streams through the upper edge of the boundary 

layer, then at z -- Zw 

0 ze =0  z N =  0 zc  a= 0 zc  d = O .  

On the lower boundary Z -- 0 we adopt the condition of reflection for the rate of dissipation and the condition 

of the full absorption of droplets 

Oze = N =  c d = O. 

For the free aerosol the boundary condition on the underlying surface is usually formulated as [ 13 ] 

k zO zc  a + w  ac a = a c  a, 

where a is the speed of dry deposition. Its dependence on friction velocity and the speed of gravitational deposition 

was derived experimentally in [14 ]: a = bu. + Wa, b = 4" l0 -2 for particles with r a > 5/~m. 

Since, as is done in the models of impurity propagation in the boundary layer of the atmosphere, we neglect 

turbulent diffusion along the flow, the values of the variables at the exit boundary x = Xw can be calculated from 
equations. 

Equations (7)-(11) and boundary conditions contain as parameters the horizontal speed of the wind U(z), 

the coefficient of turbulent diffusion in the horizontal k(x, zy) and vertical kz(z) directions, and the friction velocity 

u.. These parameters are calculated with the help of a semiempirical model of the boundary layer of the atmosphere 

based on the balance equations for the kinetic energy of turbulence and the rate of dissipation [15]. In this case 
the coefficient ky can be represented in the form [2 ] 

ky (x, z) = v (z) (10 +/6z x), 

where k0 is a constant depending on stratification;/62 is the variance in the fluctuations of the direction of the wind 

velocity vector. This form of representation allows one to reduce the problem to a two-dimensional one with the 
aid of the substitution 

e ( x ,  y ,  z) = e* (x ,  z) exp ( -  y2 /2  a 2) a2 f12 2 , (x) = 2kx 0 + x 

and similar substitutions for the remaining variables. 

The stationary solution of the problem for e*, N*, c~, and Ca is found numerically by a time-dependent 

technique with zero initial conditions. It uses an algorithm of splitting into the physical processes of advection, 
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Fig. 2. Isolines of the dimensionless concentration field of the free (a) and 

captured (b) aerosol at y -- 0. x, z, m. 

diffusion, and washout. The advection stage is calculated with the help of a semi-Lagrangian scheme with bilinear 

interpolation [16 ], and the stage of diffusion is calculated with the help of a conservative scheme of the second 

order of approximation [ 17 ]. The grid step is Ax = 50 m in the horizontal direction and Az -- 4 m in the vertical 

direction (the dimensionless steps are equal to 0.05 and 0.04, respectively). 

To characterize the efficiency of washout, we introduce the integral coefficient of the washout as the ratio 

of the overall flow of bound aerosol onto the surface of the earth to the flow through the pipe mouth 

A =  f f  (kzOzC d + wdcd) dxdy/cpwpJrR ~. 
z=0 

Since the concentration of captured aerosol on the surface of the earth is equal to zero, we actually take 

the values of the integrand at the first computational level z = 4 m, allowing for the constancy of the turbulent flow 

in the near-earth layer [18 ]: kzOzed I ~4 = kzOzcdlz=o. 
Results of the Calculations. We performed calculations for four versions differing by the relative positions 

of the pipe and cooling tower and by the speed of the geostrophic (at the upper edge of the boundary layer) wind 

Ug. The following parameters characterize the boundary layer of the atmosphere: roughness parameter (charac- 

teristic dimension of the irregularities of the surface) z 0 = 1 cm; the Coriolis parameter f - -  2g] sin ~o = 10 -4 

corresponds to the latitude ~o = 40 ~ (ff~ is the angular speed of the rotation of the earth). The air temperature near 

the earth's surface of 17~ and the stable temperature stratification of the upper part of the boundary layer 

correspond to the mean conditions of summer for the Moscow region [10]. The temperature stratification of the 

lower part of the boundary layer is neutral. 

The results of calculation of A are the following: 

Ug, m/sec 10 -10 5 -5 

A, % 17 26 43 45 
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TABLE 1. Dependence of the Integral Coefficient of Washout A on the Water Content of the Cooling Tower Plume 

~d ,g /~  

10 

20 

A,% 

Ug= 10 m/sec Ug =-5  m/sec 

26 45 

42 73 

6d, g/m 3 

30 

40 

A,% 

Ug = 10m/sec 

52 

57 
I 

Ug=-5 m/sec 

90 

98 

Positive values of Ug correspond to the position of the pipe on the leeward side of the cooling tower, and negative 

values on the windward side. In Fig. 2 the isolines of the dimensionless concentration fields are given for a free 

Ca/Cp and captured Cd/Cp aerosol at the section y -- 0 for the second version. 

The main conclusion that can be drawn taking into account the estimation character of the calculations is 

that the fraction of the washed out aerosol is appreciable, i.e., it amounts to dozens of a per cent. A perceptible 

growth in A with a decrease in the wind speed is due to the increase in the local rate of washout because of the 

rise in the concentration of droplets and aerosol in the mixing zone of the plumes. We also note some increase in 

A for the case of the position of the pipe on the leeward side of the cooling tower due to the increase in the 

concentration at the inlet to the mixing zone. 

Table 1 conveys the change in A with an increase in the water content of the droplet phase of the cooling 

tower plume. We note the nonlinear character of the dependence: to double the fraction of the washed-out aerosol 

it is necessary to increase the water content by a factor of three. 

Discussion of the Results and Conclusion. As a result of theoretical investigations and mathematical 

simulation it is shown that the efficiency of the capture of aerosols, including radioactive ones, by water droplets 

depends on many factors. The main ones are the dimensions of the mixing zone of the two plumes and two moments 

of the droplet radius distribution function (zeroth and second). This work proved that the intensity of turbulent 

agitation in the mixing zone and the speed of the stalling wind are also significant. Large droplets that captured 

the aerosol precipitate onto the earth. The magnitude of sweeping depends on the effective height of the mixing 

zone of the plumes, the mean horizontal speed of the stalling wind, and the speed of steady gravity-induced fall 

of droplets of size equal to the mean size of droplets in the distribution function introduced above. As a result of 

turbulent agitation in the boundary layer of the atmosphere, the cloud of droplets broadens in the direction normal 

to the wind speed. The characteristic dimension of the droplet cloud broadening on the underlying earth surface 

depends on the effective height of the mixing zone of the two plumes, the fall time of the droplets, and the coefficient 

of turbulent diffusion. 

It is interesting to note that the process of the washout of radioactive aerosols by liquid droplets attracts 

the attention of engineers and research workers looking for ways of reducing the consequences of grave accidents 

at NPS not only in the free atmosphere, but also in the atmosphere of the containment [19 ]. It is natural that due 

to the much higher concentration of aerosol than that in the regime investigated here, effects that depend 
nonlinearly on the aerosol concentration play an important part. 

In conclusion we wish to express our gratitude to N. I. Lemesh and L. A. Senchuk for kindly providing the 

experimental data and to V. P. Reshetin for interesting discussions of the problem. 

N O T A T I O N  

r a, aerosol radius; 2a, mean free path of aerosol; rd, droplet radius; w(rd), steady-state fall velocity of a 

droplet; c, volumetric concentration of impurity; 2, coefficient of washout; E, collision cross-section of droplet and 
aerosol; U(z), horizontal wind speed; A, integral coefficient of washout; Ug, speed of geostrophic wind; f, Coriolis 
parameter; 3d, water content of the droplet phase. 
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